Convergence analysis of a discrete-time recurrent neural network to perform quadratic real optimization with bound constraints
نویسنده
چکیده
This paper presents a model of a discrete-time recurrent neural network designed to perform quadratic real optimization with bound constraints. The network iteratively improves the estimate of the solution, always maintaining it inside of the feasible region. Several neuron updating rules which assure global convergence of the net to the desired minimum have been obtained. Some of them also assure exponential convergence and maximize a lower bound for the convergence degree. Simulation results are presented to show the net performance.
منابع مشابه
A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints
This paper presents a continuous-time recurrent neural-network model for nonlinear optimization with any continuously differentiable objective function and bound constraints. Quadratic optimization with bound constraints is a special problem which can be solved by the recurrent neural network. The proposed recurrent neural network has the following characteristics. 1) It is regular in the sense...
متن کاملGlobal exponential stability of discrete-time neural networks for constrained quadratic optimization
A class of discrete-time recurrent neural networks for solving quadratic optimization problems over bound constraints is studied. The regularity and completeness of the network are discussed. The network is proven to be globally exponentially stable (GES) under some mild conditions. The analysis of GES extends the existing stability results for discrete-time recurrent networks. A simulation exa...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملA Recurrent Neural Network Model for solving CCR Model in Data Envelopment Analysis
In this paper, we present a recurrent neural network model for solving CCR Model in Data Envelopment Analysis (DEA). The proposed neural network model is derived from an unconstrained minimization problem. In the theoretical aspect, it is shown that the proposed neural network is stable in the sense of Lyapunov and globally convergent to the optimal solution of CCR model. The proposed model has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 9 6 شماره
صفحات -
تاریخ انتشار 1998